On 3-choosability of plane graphs having no 3-, 6-, 7- and 8-cycles
نویسنده
چکیده
A graph is k-choosable if it can be colored whenever every vertex has a list of available colors of size at least k. It is a generalization of graph coloring where all vertices do not have the same available colors. We show that every triangle-free plane graph without 6-, 7-, and 8-cycles is 3-choosable.
منابع مشابه
Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles
Let G be a planar graph with no two 3-cycles sharing an edge. We show that if ∆(G) ≥ 9, then χ′l(G) = ∆(G) and χ ′′ l (G) = ∆(G) + 1. We also show that if ∆(G) ≥ 6, then χ ′ l(G) ≤ ∆(G) + 1 and if ∆(G) ≥ 7, then χ′′ l (G) ≤ ∆(G) + 2. All of these results extend to graphs in the projective plane and when ∆(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-c...
متن کاملSome structural properties of planar graphs and their applications to 3-choosability
In this article, we consider planar graphs in which each vertex is not incident to some cycles of given lengths, but all vertices can have different restrictions. This generalizes the approach based on forbidden cycles which corresponds to the case where all vertices have the same restrictions on the incident cycles. We prove that a planar graph G is 3-choosable if it is satisfied one of the fo...
متن کاملOn Choosability with Separation of Planar Graphs with Forbidden Cycles
We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...
متن کامل3-choosability of Triangle-free Planar Graphs with Constraint on 4-cycles
A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. A theorem by Grötzsch [2] asserts that every triangle-free planar graph is 3-colorable. On the other hand Voigt [10] gave such a graph which is not 3-choosable. We prove that every triangle-free planar graph such that 4-cycles do not share edges with other 4and 5-cycles is 3-choosable. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 44 شماره
صفحات -
تاریخ انتشار 2009